

Rosenfeld Media
Brooklyn, New York

Sarah Horton and Whitney Quesenbery

A WEB FOR EVERYONE
DESIGNING ACCESSIBLE USER EXPERIENCES

 ix

CONTENTS
How to Use This Book iv

Frequently Asked Questions vi

Foreword xvii

CHAPTER 1

A Web for Everyone 1
Understanding the Accessibility Equation 2

Accessibility 3

Inclusive design 4

Building a Framework for Accessible User Experience 4

Web Content Accessibility Guidelines 6

Principles of Universal Design 7

Design Thinking 8

Using Design Thinking for Accessibility 9

Summary 10

CHAPTER 2

People First: Designing for Differences 11
Know Your Audience 12

About Personas 14

What’s in the Personas? 15

Meet the Personas 15

Summary 34

CHAPTER 3

Clear Purpose: Well-Defined Goals 35
How Clear Purpose Supports Accessibility 37

How to Design for a Clear Purpose 38

Start with purpose and goals 38

Design for clarity and simplicity 39

Think “accessibility first” 39

Make templates accessible, too 41

Choose an accessibility strategy 43

x Contents

Who Is Responsible for Clear Purpose 43

Summary 46

Profile: Simple and Usable with Giles Colborne 47

CHAPTER 4

Solid Structure: Built to Standards 49
How Solid Structure Supports Accessibility 51

How to Create a Solid Structure 53

Code content to be machine-readable 53

Code to standards 53

Use standard web technologies 55

Organize code for clarity and flow 56

Use stylesheets to separate content and

presentation 58

Use semantic markup for content 58

Who Is Responsible for a Solid Structure? 61

WCAG 2.0 and Solid Structure 61

Summary 62

Profile: Accessibility Standards with Mike Paciello 63

CHAPTER 5

Easy Interaction: Everything Works 65
How Easy Interaction Supports Accessibility 67

Designing for Easy Interaction 69

Identify and describe interactive elements 69

Use basic HTML codes correctly 69

Use WAI-ARIA for complex elements 70

Use features of the technology platform 71

Provide accessible instructions and feedback 72

Support keyboard interaction 75

Make controls large enough to operate easily 78

Let users control the operation of the interface 80

 Contents xi

Design for contingencies 80

Allow users to request more time 82

Who Is Responsible for Easy Interaction? 82

WCAG 2.0 and Easy Interaction 83

Summary 84

Profile: Accessible Interaction with

Derek Featherstone 85

CHAPTER 6

Helpful Wayfinding: Guides Users 87
How Helpful Wayfinding Supports Accessibility 90

How to Design Helpful Wayfinding 91

Create consistent cues for orientation and

navigation 91

Present things that are the same in the same way 91

Differentiate things that are different 92

Provide orientation cues 93

Provide clear landmarks within the page 94

Provide alternative ways to navigate 96

Who Is Responsible for Wayfinding? 98

WCAG 2.0 and Helpful Wayfinding 98

Summary 99

Profile: Coding Accessibility with Steve Faulkner 100

CHAPTER 7

Clean Presentation: Supports Meaning 103
How Clean Presentation Supports Accessibility 105

How to Design for Clean Presentation 106

Design simply 107

Minimize distracting clutter 107

Design for customization of the display 108

Support customization through the browser 112

xii Contents

Design content for easy comprehension 114

Use color contrast to separate foreground

from background 115

Use visual and semantic space 117

Provide enough space between lines of text 118

Use clean typography 119

Who Is Responsible for Clean Presentation? 120

WCAG 2.0 and Clean Presentation 120

Summary 122

Profile: Responsive Design with Ethan Marcotte 123

CHAPTER 8

Plain Language: Creates a Conversation 125
How Plain Language Supports Accessibility 127

How to Design for Plain Language 130

Write for your audience 130

Follow plain language guidelines for

writing content 130

Support users through their tasks 133

Structure the whole page for scanning

and understanding 134

Write sentences and paragraphs for

easy scanning 136

Write helpful links 138

Use language your audience is familiar with

or provide definitions 140

Provide plain language summaries of

complex content 140

Don’t rely on readability formulas 141

Usability test your content 144

Who Is Responsible for Plain Language 144

WCAG 2.0 and Plain Language 145

 Contents xiii

Summary 146

Profile: Universal Plain Language with Ginny Redish 147

CHAPTER 9

Accessible Media: Supports All Senses 149
How Accessible Media Supports Accessibility 151

How to Design for Accessible Media 152

Don’t use only color to communicate meaning 153

Provide instructions without relying on

visual cues 154

Describe the content or meaning of images 155

Provide captions and descriptions for video 157

Format captions to enhance meaning 161

Provide alternatives to time-based media 163

Use dynamic elements carefully 164

Make presentations accessible 166

Who Is Responsible for Accessible Media? 167

WCAG 2.0 and Accessible Media 167

Summary 169

Profile: Accessible Media with Larry Goldberg 170

CHAPTER 10

Universal Usability: Creates Delight 173
How Universal Usability Supports Web Accessibility 175

How to Design for Universal Usability 176

Design for exploration and discovery 177

Create a conversation 181

Be informative and helpful 183

Practice usability for accessibility 185

Who Is Responsible for Universal Usability? 187

Summary 187

Profile: Toward Universal Usability with

Ben Shneiderman 188

xiv Contents

CHAPTER 11

In Practice: An Integrated Process 191
Making Accessibility the Way You Do Business 193

Making a Commitment to Accessibility 194

Assessing What’s Needed for an Integrated Practice 195

Evaluate the current site 196

Identify ways to allocate resources 197

Identify opportunities to integrate accessibility

into current processes 197

Assess current knowledge and readiness 198

Supporting an Integrated Practice 198

Set policies and develop training 199

Choose content and development tools that

support accessibility 199

Create a style guide and media library 201

Include people with disabilities 202

Provide tools and assistive technology for

ongoing evaluation 203

Make accessibility part of site maintenance 205

Summary 205

Profile: Design Education with Valerie Fletcher 206

CHAPTER 12

The Future: Design for All 209
What a Web for Everyone Looks Like 211

What We Need to Do to Get There 212

Get out in front with web accessibility 212

Build awareness and understanding of

more diverse people 213

Get support for accessibility into

mainstream products 214

 Contents xv

Make accessibility part of how we think 215

Don’t launch until it’s accessible 216

Now, to the Future 217

APPENDIX A

Accessible UX Principles and Guidelines 219

APPENDIX B

WCAG 2.0 Cross-Reference 225
People First: Designing for Differences 227

Clear Purpose: Well-Defined Goals 227

Solid Structure: Built to Standards 227

Easy Interaction: Everything Works 229

Helpful Wayfinding: Guides Users 232

Clean Presentation: Supports Meaning 234

Plain Language: Creates a Conversation 236

Accessible Media: Supports All Senses 237

Universal Usability: Creates Delight 241

Summary: WCAG Requirements in Order 242

APPENDIX C

More Reading 245
Chapter 1: A Web for Everyone 246

Design Principles 246

Books on Web Accessibility 246

Chapter 2: People First 246

User Research and Personas 246

Disability Demographics and User Research 247

About Assistive Technology 247

Personas of People with Disabilities 247

Chapter 3: Clear Purpose 247

xvi Contents

Chapter 4: Solid Structure 247

Web and Accessibility Standards 247

Code Validators 248

Chapter 5: Easy Interaction 248

Chapter 6: Helpful Wayfinding 248

Chapter 7: Clean Presentation 248

Chapter 8: Plain Language 249

Plain Language Guidelines 249

Writing for Different Audiences 249

Chapter 9: Accessible Media 249

Writing Alternative Text 249

Captions and Multimedia Accessibility 250

Chapter 10: Universal Usability 250

Usability Testing 250

Chapter 11: Integrated Process 251

Planning and Project Management 251

Accessibility Evaluation 251

Toolbars to Check Accessibility 251

Screen Readers and Screen Magnifiers

for Windows 252

Tools to Evaluate Flash and Other Rich

Internet Applications 252

Chapter 12: The Future 252

Index 253

Acknowledgments 266

About the Authors 268

Easy Interaction:
Everything
Works

How Easy Interaction Supports Accessibility 67

Designing for Easy Interaction 69

Identify and describe interactive elements 69

Use basic HTML codes correctly 69

Use WAI-ARIA for complex elements 70

Use features of the technology platform 71

Provide accessible instructions and feedback 72

Support keyboard interaction 75

Make controls large enough to operate easily 78

Let users control the operation of the interface 80

Design for contingencies 80

Allow users to request more time 82

Who Is Responsible for Easy Interaction? 82

WCAG 2.0 and Easy Interaction 83

Summary 84

Profile: Accessible Interaction with

Derek Featherstone 85

CHAPTER 5

A REAL WORLD EXAMPLE

EZ Access on Amtrak Ticket Machine

Many people use these Amtrak ticketing machines and never notice
the EZ Access options, but they are there for those who need them.
Source: http://trace.wisc.edu/ez/

There’s very little as fundamental to independence as being able to get
around on your own, without needing assistance. For many people, getting
around means using kiosks to purchase tickets. For trains, buses, subways …
touchscreen kiosks are everywhere. But how do you use one if you are blind?

Enter EZ Access, designed at the Trace Center. By adding tactile buttons and
an audio interface, EZ Access makes touchscreens easy to operate for every-
one, including people who can’t see.

Even better, the EZ Access features are unobtrusive—they are available for
those who need them, but do not get in the way of those who don’t.

 Easy Interaction: Everything Works 67

The ultimate design “fail” is a website or app that people can’t get
to work. By contrast, everyone loves sites that are easy to operate
and whose interaction feels intuitive. They can use them success-

fully with any device or assistive technology, and the site makes them
feel confident and capable.

One way to think of interaction failures is as “I can’t” moments: “I can’t
figure out how to submit this form.” “I can’t select this menu item.” “I
can’t figure out how to enter my phone number in the right format.”
As users, we want—and hope for—interfaces that are self-explanatory,
guiding us as effortlessly as possible. The controls should be easy to
understand and use, which leads to “I can” moments.

Creating websites and web applications that people can use might seem
like a no-brainer, but it’s not an easy task. With the myriad technologies
that can be used for building, different devices and software for access-
ing, different modes of interaction, different user needs and preferences,
it’s a complex environment for creating sites and apps that don’t break.
And then there’s the pace of change!

How Easy Interaction
Supports Accessibility
In Chapter 4, “Solid Structure,” we talked about the importance of pro-
ducing websites and web applications that software, including assistive
technology, can read. Now, we’ll look at how people interact with web-
sites, and what is needed for accessibility.

Interfaces can be difficult to operate using standard tools, never mind
specialized technologies. For web accessibility, easy interaction must
take into account different needs.

Don’t make me work so hard.

I love my keyboard. I tried dozens until I

found one that fits my hands perfectly, so

I hardly have to move to type. Maybe you

think I’m a bit over the top, but it makes

a difference for me by the end of the day.

Using a mouse takes more energy than

you think, and I have to conserve mine if

I’m going to make it through the day. So do me a favor and let

me use my keyboard for everything. OK?

Lea

68 Chapter 5

With easy interaction, people can use the product across all modes of
interaction and operating with a broad range of devices.

Sites don’t create barriers, or sites make barriers easy to overcome.
The worst barriers keep someone from using a site at all. A few years
ago, there was a debate about whether interactive worlds like Second
Life were accessible. Many people with disabilities used them, both
for the general enjoyment and because the interactive environment
made their disability invisible. Even for blind users, it turned out that
the most inaccessible part of the interface—the one that kept them
from using Second Life at all—was the sign-in screen! (Second Life has
since fixed this problem, marking up the sign-in form correctly.) Even
small barriers can drive a user away. These are the sites that “sort of
work” if you can just figure out how to get around the speed bumps
of things like confusing markup or navigation. As Clayton Lewis put
it, “Many barriers to cognitive accessibility are the same as usability
problems for a general user audience … but more severe.”

Designs work for people. When things work well, we hardly notice
them. That’s why bad designs are so annoying and frustrating.
CAPTCHA1 is an example of a perfect storm of bad interaction—
hard for everyone to use, not just people with disabilities. CAPTCHAs
try to make sure that a real person (rather than software) is filling
out a form, so they display a code word in distorted letters. The
idea is that robots or other software can’t read the letters, even
using character recognition. To make them accessible, CAPTCHAs
can include a distorted audio version that is also supposed to be
undecipherable by software. Unfortunately, both the visual and
audio distortions are difficult for many people, even with good
eyesight or hearing. People may have difficulty separating sounds
from background noise or spelling words with difficult letter
combinations. Ironically, CAPTCHAs aren’t even very effective—
a spammer can pay for keys to break them for under a penny each.

People can choose their own way to interact with a site. Some
disabilities impact dexterity, making it difficult to respond quickly
or to operate some kinds of controls. For example, some people work
best with tactile controls—buttons and other controls they can feel—
while others work best with pointing devices. All of this adds up to

1 CAPTCHA stands for Completely Automated Public Turing test to Tell Computers
and Humans Apart, but they can be so frustrating that Jared Smith from WebAIM
suggests it should mean Completely Automated Patience Test to Confuse the Hell
out of your Audience.

 Easy Interaction: Everything Works 69

giving people the ability and means to control their own environ-
ment, the time and space to work at their own pace in their own way,
and the software and hardware that works best for them.

Designing for Easy Interaction
Success in interaction design is largely a matter of following established
patterns, so people can apply what they already know to new contexts.
Using known and well-established interactive controls goes a long way in
designing for easy interaction. There are specific considerations that will
help make controls more usable for people using assistive technologies.
And there are design considerations that make interaction more usable
and enjoyable for everyone, including people with disabilities.

Identify and describe interactive elements
Interactive elements should be easy to distinguish from other elements
on the page. For example, links and buttons can be identified in the fol-
lowing ways:

Visually. Links are often colored and underlined, and buttons are
identifiable by shape.

In code. Link and button markup codes distinguish these elements,
making it possible for browsers to identify them.

Through interaction. Links and buttons can show their state, such
as when they are active, through changes in their appearance. They
can also be accessed through the keyboard or in lists of interactive
elements constructed by assistive technology.

Between HTML, WAI-ARIA, and features of the technology platform,
there are many options for providing accessible interactivity by using
code to identify and describe interactive elements.

Use basic HTML codes correctly
In addition to coding interactive components, you can also describe
their function programmatically. HTML has codes that help software
communicate information about components to users.

With basic HTML, interaction is limited to links and form controls.
The codes you use to provide interaction include the attributes needed
to make the elements accessible. Implementing those elements fully,
according to specification, goes far in providing accessible interactiv-
ity. Take, for example, a label for a text input field, as shown in Figure 5.1.

70 Chapter 5

Visually, the label is related by proximity, usually appearing right before
the field. In code, the label is related using the <label for> element and
attribute, which programmatically connects the label with the input
field. That way software can tell the user which type of information to
enter into the field.

<label for=”firstname”>First name:</label>

<input type=”text” id=”firstname” />

<label for=”lastname”>Last name:</label>

<input type=”text” id=”lastname” />

FIGURE 5.1
Labels are visually
associated by prox-
imity with text input
fields. In code, labels
are programmatically
connected using the
<label> element, the
“for” attribute, and
the input field’s “id”
attribute making the
connection.

Use WAI-ARIA for complex elements
Until recently, there was not the same built-in accessible support for
complex, page-level interaction as there is for links and forms. But that is
finally changing. With WAI-ARIA, you can identify and describe interac-
tive elements in a way that software can read, so it is accessible to users
of assistive technology.

For example, one interaction pattern is the “accordion” widget, which
is a link that, when clicked, expands to show hidden content (see Fig-
ure 5.2). Clicking a second time collapses the content back to its hidden
state. This pattern is helpful for content that may not be relevant to all
users. It saves precious screen real estate, and also provides a way to
learn more in context, without jumping to different pages or scrolling
through one long page.

ARIA provides codes you can use to identify and describe interactive
components like an accordion widget programmatically so that assis-
tive technology can communicate information about the component
to users. For example, in the case of an accordion widget, the “aria-
expanded” attribute can be set programmatically to “true” or “false,”
depending on the state of the component.

 Easy Interaction: Everything Works 71

ARIA is helpful for other interactions as well. For example, in the sample
sign-up form, shown in Figure 5.3, error messages are coded with the
attribute role=”alert” so that the helpful in-line error messages can be
announced to screen reader users.

FIGURE 5.3
In this sample account sign-up form, alerts are identified program-
matically using the ARIA role attribute.

Use features of the technology platform
When you are coding elements using programming other than HTML,
you should use the features of the technology to fully identify and
describe interactive elements. For the most part, technologies like Flash
and Java have the necessary hooks for accessibility. Those who develop

FIGURE 5.2
The OpenAjax
Alliance (www.oaa-
accessibility.org)
provides examples and
downloadable code for
many common design
patterns, including an
accessible accordion
widget. (www.oaa-
accessibility.org/
examplep/accordian1/)

72 Chapter 5

using these tools just need to use them correctly and to design so it is
possible to code the interaction accessibly.

But you should consider the ramifications carefully before moving away
from standard technologies. Is the interaction necessary to the purpose
and goals of the product? If so, can you accomplish what’s needed using
standard coding? Exhaust the possibility of using standard web technol-
ogies before you make a commitment to a non-standard, and therefore
less stable and accessible format.

Provide accessible instructions and feedback
In Chapter 4, Organize code for clarity and flow, we discussed how some
modes of interaction rely on linearized access, and the code order

Guidelines for Rich Internet Applications in Flex, Flash, and Silverlight

The websites for financial service companies often include complex financial infor-
mation, including real-time data, price charts, and information to help investors
manage their money. The guidelines below are excerpted from Ann Chadwick-Dias
and Marguerite Bergel’s work with product development teams to make sure that
their applications are accessible, especially for older customers managing their
retirement funds.

1. Clearly indicate and manage focus.

Ensure users can visually track their focus when keyboard navigating.

Shift focus into layers as they open; return focus to the originating link
once closed.

Keep users’ focus on controls as they operate them (expand/collapse toggle).

2. Help users know where to begin and reinforce where they are.

Use style changes for selected menu items, buttons, and visited links in con-
tent pages.

Add a button that simulates the browser’s Back button, if needed.

Mirror the page’s information hierarchy in the code using proper
semantic markup.

3. Clearly indicate what is interactive and how to interact with it.

Offer clear instructions or demos, where appropriate.

Change cursors and styles for interactive controls on hover.

Use active terminology on interactive elements.

Use ARIA to communicate custom controls’ role and state to assistive
technologies.

 Easy Interaction: Everything Works 73

matters because it affects the order in which elements are presented.
For example, the audio mode of a screen reader cannot present more
than one piece of information or interactive option at a time. Interactive
elements that are not sequenced correctly can create barriers for every-
one, but especially for people relying on a linear presentation.

It’s not the details of the interaction itself that create the barrier, but
how it is structured in the code and presented to users. A simple rule of
thumb is to design the page so that any changes made after it loads the
first time happen “downstream” of the cursor.

The location in the code makes a real difference to the accessibility of
forms and error messages. For example, as a user fills in a form, the code
checks each entry to be sure it is valid. It might check to see if a username

Guidelines for Rich Internet Applications in Flex, Flash, and Silverlight

4. Progressively reveal content.

Draw attention to changes (fading colored backgrounds, data loading
indicators).

Change content downstream of users’ focus.

Use ARIA live regions to announce updated content to assistive
technologies.

5. Design forgiving controls and inputs.

Use large click, grab, tap, drop targets. Wrap supporting icons in adjacent
text links.

Don’t make controls too sensitive, requiring fine motor control.

Add redundant text entry fields next to sliders.

6. Let users control movement on the page.

Don’t auto-play A/V content or loop animations users can’t control.

Warn users in advance if links launch A/V content.

7. Respect users’ settings.

Make fonts responsive to browsers’ text size controls (e.g., IE’s
View>Text Size).

Ensure that content wraps and containers adjust as font sizes scale.

Don’t override color display settings users set in their browser or
operating system.

74 Chapter 5

is available. But, if feedback is displayed above the field, the assistive tech-
nology doesn’t see the change, and it simply proceeds to the next field.
Even worse, some forms display error messages in a “modal” pop-up
window that requires the user to close the window before correcting the
errors. With the error messages no longer displayed, the user must try to
remember the list of problems while looking for the fields to correct.

Or it could be that, after a user submits a form, software on the server
identifies a problem with the submitted data and redisplays the form so
the errors can be corrected. In some cases, the program positions the
cursor in the field in question. Unfortunately, the error message is dis-
played at the top of the page. Not only will assistive technology not see
this message, but most users won’t see it either.

So as you are designing forms, you should make sure that any interactive
feedback appears both in the code and on-screen in a way that makes
sense when linearized. Most often, this means putting the inserted
feedback after the element, so it is the next thing in the tab and reading
order, as well as marking it with an ARIA role, as shown in the sample
sign-up form in Figure 5.3.

Sequencing also matters for instructions. Sometimes, forms are coded
so that instructions and labels appear after the form fields and buttons.
Users (and assistive technology) have to read ahead to determine the
purpose of each field and then backtrack to fill in the field. Be sure that
the elements in a form follow a logical sequence: identify and describe an
element before the interaction, both visually and in the code.

Instructions and labels that appear inside the field are problematic because
they disappear when the field is activated. Users who need to look at the
keyboard as they type will miss the hint entirely. Others won’t remember the
details in the instructions and labels once they are no longer displayed.

I don’t understand what the screen
is saying.

I love seeing photos of my grandchildren,

particularly since they live so far away. My

granddaughter set up a place where she

can put up pictures and notes for me. I was

excited, but it took me three tries and a

phone call to get me connected. I thought

I filled in all the answers correctly, but the same questions kept

appearing. I’m sure that program was trying to tell me what to

do, but I just couldn’t understand what the screen was saying.

Carol

 Easy Interaction: Everything Works 75

Support keyboard interaction
The point-and-click interaction model popularized by the mouse is
not universally usable. Nonvisual users cannot see to point the mouse.
People with dexterity issues may find mouse operations awkward and
cumbersome. Some alternative input devices work by activating key-
board commands instead. Also, some people find keyboard control
easier, more comfortable, and more efficient than pointing.

Provide a logical tab order

In Chapter 4, we talked about how the code order affects linear access
to web pages in Organize code for clarity and flow. Code order has a sig-
nificant impact on keyboard navigation, especially when using the tab
key to cycle through actionable elements (interactive controls like but-
tons and links) on the page. Tabbing is a common navigation approach
for keyboard users, similar to how mouse users will look for and click
on links and controls. Keyboard users will press the tab key repeatedly
until arriving at the desired element and then press Enter to activate
the control.

With standard web pages, tab order is based on the sequence of elements
in the code order. Other formats use other methods—for example, Flash
calculates tab order based on the location of elements on the screen. In
either case, it’s important to test tab order to make sure it follows a logi-
cal progression.

While it’s possible to manually set tab order in code, the best approach is
to sequence elements appropriately, so the natural tab order works in a
logical and usable fashion.

Don’t require point-and-click interaction

Supporting keyboard interaction doesn’t mean that you can never use
complex interactions like drag and drop. Just make sure that all interac-
tions have an option that does not require pointing.

Here are some things to keep in mind when designing interactions:

Hover: Some devices do not support hover, such as touchscreens—
hover all you want over a touchscreen, and nothing is going to
happen! Hover actions can also be annoying when they are triggered
inadvertently, such as when a menu is displayed simply because
the mouse pointer crossed it on the way to another part of the
screen. Hovers can also be distracting to people with cognitive or
attention disabilities.

76 Chapter 5

From Barrier to Best-in-Class

When the Apple iPhone first came out, the disability community was
dismayed: there were almost no tactile controls, making the phone
impossible for the blind and people with dexterity disabilities to
use. But today, Apple’s touchscreen devices—iPad and iPhone—have
gained a following in the blind community because the interface
is now designed with voice and gesture input and a built-in screen
reader, called VoiceOver (see Figure 5.4).

FIGURE 5.4
VoiceOver speaks
what is tapped, and
activates whatever
item currently has
focus on a double-tap.

With the success of VoiceOver, other companies are also building
accessibility into their devices, although none have reached the level
of VoiceOver. What’s new, even revolutionary, about these features is
that they are built into the platform operating systems, so they can be
turned on and off without any special hardware or software.

When accessibility features get this easy, they start to become univer-
sal design. Both VoiceOver and Explore-by-Touch allow eyes-free use
of the device for anyone whose eyes are otherwise occupied. Siri and
other voice activation features are innovative uses of voice technology
that let everyone interact with their devices easily.

 Easy Interaction: Everything Works 77

Select: Using “select” to trigger actions is problematic for keyboard
users because events are activated inadvertently as soon as they are
selected. The best approach is to use a select/activate model of inter-
action, where elements are selected and identified, and then explicitly
activated by the user. Using this model, you can build one interaction
mode that works universally.

Drag and drop: This style of interaction makes direct manipulation
of objects easy, but typically requires a pointing device and dexterity.
Instead, you can offer a keyboard-accessible alternative way to move
items from one place to another (see Figure 5.5).

Show which element has keyboard focus

Keyboard users also benefit from a clear indicator showing which element
currently has focus. Browser software supplies a default focus indica-
tor—typically a dotted outline around the element. However, keyboard
usability can be improved by using CSS to provide stronger visual cues
to help users make deliberate choices about which elements to interact
with. Figure 5.6 shows an example of CSS code. Best practice is to provide
the same visual cue as provided to indicate hover—for example, when the
mouse or other pointing device is “hovering” over an element.

a:hover, a:active, a:focus { outline: 2px solid blue }

FIGURE 5.6
Use CSS to provide a visible outline around items that have keyboard
focus. In this example, the same 2 pixel blue outline identifies which
item is moused over (hover), active, or has keyboard focus.

FIGURE 5.5
This feature, collect-
ing bookmarks for
related items, requires
a mouse to drag and
drop items into the list.
A simple Add button
would make this more
accessible.

78 Chapter 5

Don’t trap keyboard focus

“Keyboard trap” can happen with embedded objects, such as videos, applets,
and Flash. When the focus is trapped, users can’t get in or out of an element
without a pointing device, like a mouse. Techniques for avoiding keyboard
trap are dependent in large part on the technology of the embedded object.
Ideally, entering and exiting an embedded object uses the same navigation
methods as a web page—namely, tabbing and arrow keys. For technologies
that do not support standard navigation, provide a keyboard option and
document it so that keyboard users can avoid getting trapped.

Make controls large enough to operate easily
Controls on-screen may not be three dimensional, but users still need
dexterity to operate them. Physical issues from arthritis to tremors can
make it hard to accurately use a control, but so can context like work-
ing on a crowded airplane without enough elbow room, or even wearing

The User’s Finger Is the Center

We all love our smartphones, but how can someone
who can’t see dial the phone on a touchscreen?

The answer is the Talking Dialer, a free Android app
from the Eyes-Free project (including T.V. Raman from
Google). It cleverly redefines the interaction from the
perspective of the user, rather than the device. Here’s
how it works (see Figure 5.7):

Just touch the screen anywhere: that’s where the “5”
button is.

Slide your finger up, down, left, right or diagonally
to reach another number, based on the layout of a
phone keypad.

Talking Dialer announces the number.

When you have entered the whole phone number, tap
anywhere at the bottom of the screen to start the call.

FIGURE 5.7
Starting from where your finger touches the
screen, sliding it in any direction selects a number.
For example, go to the left for a “4” or up diago-
nally to the right for a “3.”

 Easy Interaction: Everything Works 79

gloves. People navigating the web using a touchscreen mobile device can
run into difficulty trying to, for example, select one of a set of radio but-
tons, or click a submit button. Even responsive sites may not take into
account the differences in size between a pointing device and a fingertip.

The following guidelines help make controls easy to use:

Minimize the fine-motor skills needed for interactive elements.
Make buttons and touch points large enough.

Space controls. Put enough space between controls so that users
don’t accidentally activate the wrong one.

Minimize the complexity of the action required. Choose controls
that do not require timing or managing multiple actions when pos-
sible. Watch out for controls like multi-level menus that require a
steady hand to operate.

Don’t Make Your Users Build a Frankenkindle

Glenn’s sister had a problem. She loved to read, but her cerebral palsy made
handling both books and most ebook readers hard for her. Luckily, Glenn is an
engineer with the skills to take on projects to make her life easier.

They found a children’s book reader that she could use, but it didn’t come with
books she was interested in. The Kindle was a good start because it had buttons
instead of a touchscreen, but the buttons were too small and stiff for her.

A little bit of homebrew electronics later, Glenn created the Frankenkindle, substi-
tuting a set of large buttons for the ones that come with the Kindle (see Figure 5.8).

FIGURE 5.8
DIY assistive technology for the Kindle.
http://breadboardconfessions.blogspot.
com/2011/08/frankenkindle-prototype-
demo.html

80 Chapter 5

Let users control the operation of the interface
Try to avoid making changes that are not triggered by an explicit user
request. For example, the “carousel” of highlighted stories on a home page
typically advances automatically, based on an estimation of time needed
to get through the content. Uncontrolled motion in an interface is dis-
tracting and impacts comprehension. Some users need more time to take
in the information, so at a minimum, provide a way to stop the action. (See
Chapter 9, “Accessible Media” for more information about multimedia.)

A better approach is to load the first image and provide clear controls
for advancing through the stories. This applies to all moving elements,
including media such as video and audio. Don’t play media automati-
cally. Instead, wait for users to elect to play the media. Autoplay is not
only distracting, but can also cause problems for people in a quiet set-
ting or using a low-bandwidth connection to the web (such as a weak
mobile phone signal).

Another common practice is opening links in a new window, usually
with the rationale that it will help users return to the originating website
because they can just close the window. Unfortunately, opening a new
window starts a new browsing history. When users navigate in this new
window and try to use the back button to return to the first website, they
can’t do so because the first website is not in the history for the program-
matically opened window. Indeed, this practice could end up having the
exact opposite of the desired effect—in that, users will not be able to find
their way back.

Deciding whether to open a new window is a simple illustration of an
important principle: Don’t take actions on behalf of users that they
can already accomplish on their own.

People who like to open links in new windows can achieve this expe-
rience on their own, using built-in browser controls. People who do
not like opening links in a new window cannot not use that behavior if
you program it into the interface. As designers, we need to respect the
boundaries of the user environment.

Design for contingencies
Like the fire protection and emergency exit systems of a building, digi-
tal products must also be built so that when something does go wrong,
harmful effects are minimized or prevented through error response
and recovery.

 Easy Interaction: Everything Works 81

Errors can occur on many levels. Some, like broken links or program-
ming glitches, are a matter of writing valid code (see Chapter 4, Code to
standards). Others occur because of confusion about how things work,
or through simple mistakes, like clicking on the wrong menu item when
your elbow is jostled, or poking a small screen. There is no such thing as
a fail-safe system. No interface is intuitive to every user, and no user is on
target every time.

Designing for contingencies is about using design to minimize the
impact of errors and system failures when they can’t be avoided.

For example, you should support users who are submitting information,
ordering a product, or posting a comment.

Provide a review page. Allow users to review their input before
submitting.

Give options for editing the submission. Support an iterative
review/edit process to give users plenty of time and opportunity to be
certain about their submission.

Provide a confirmation page. When the information is submitted,
confirm the transaction and provide instructions about making any
additional changes. Confirmation pages not only provide a nice end-
ing to the interaction, but they also work as conversation:

User: I’d like to place an order. Here’s all my information.

Your site: Thanks. Got it. We’ll send this to you within three days.

Good communication can also make the system easier to operate and to
avoid errors. For example, if the system requires a specific date format,
provide an example date right before the input field.

Defensive Design

37signals defines defensive design as “design for when things go
wrong.” In their book, Defensive Design for the Web, they define four
ways defensive design supports users and helps them recover:

Validates data to check for mistakes before they frustrate the user.

Expands available options based on the user’s implied intent.

Protects site visitors from server errors and broken links with
informative messages.

Assists the user before mistakes happen.

82 Chapter 5

If an error does occur, provide helpful and accessible feedback in
response to input errors. The feedback should appear with the element
containing the error, and should provide clear instructions for how to
correct the input, as shown in the sample sign-up form in Figure 5.3.

Allow users to request more time
Time is a challenge for many people. It may take more time for some-
one using assistive technologies, such as a screen reader, text enlarger,
or alternative input device like a joystick. They may read more slowly or
need more time to think about what they are reading. Other people need
time to simply move their muscles, and it may take a long time to get
their arm and hand to coordinate to interact with a link, button, or field.
Time-outs can ruin their experience.

Some websites have features that are triggered by time—a common
example is the timeout feature used for security reasons by many web
applications. When a user logs into the system, the system notes the time
and watches the activity. If a predetermined time passes with no activity
from the user, the system times out and logs the user off.

A well-designed timeout process alerts users prior to logging them off,
and provides them with the option to continue the session. Also, if the
system ends up indeed logging off the user, it caches whatever activity
they had initiated in the browser. This allows the user to log back in and
pick up where they left off.

Who Is Responsible for Easy Interaction?
Design and development collaborate on easy interaction. It is possible to
create interactions that are both innovative and accessible, but it takes
coordination. Working together to come up with ideas and ways of cod-
ing the design can take experimentation, prototyping, and cleverness in
solving problems.

When the design team understands what’s possible within the con-
straints of the medium, and the developers understand what’s required
for universally usable interaction, the results are more likely to be acces-
sible for everyone.

 Easy Interaction: Everything Works 83

WCAG 2.0 and Easy Interaction
The guidelines for Easy Interaction map to the following WCAG 2.0
requirements.

A site with easy interaction is Operable, coded to support a variety of
interactions, such as a mouse, keyboard or assistive technology. It also
ensures that users can both Perceive and Understand how to interact
with the site.

A site with easy interaction meets the guidelines:

2.1 Keyboard Accessible: Make all functionality available from a
keyboard (Guideline).

3.2 Predictable: Make web pages appear and operate in predictable
ways (Guideline).

3.3 Input Assistance: Help users avoid and correct mistakes
(Guideline).

The requirements for easy interaction are:

1.3.2 Meaningful Sequence: Programs can determine the correct
order of the content (Level A).

2.1.1 and 2.1.3 Keyboard: All functionality can be operated through
the keyboard without requiring specific timing for each keystroke
with no exceptions (Level AAA) or except where the underlying func-
tion requires input that depends on the path of the user’s movement
and not just the endpoints (Level A).

2.1.2 No Keyboard Trap: The keyboard focus does not get “trapped”
in a component (Level A).

2.4.3 Focus Order: Elements on the page receive focus in a meaning-
ful order (Level A).

2.4.7 Focus Visible: Any keyboard operable user interface has a mode
of operation where the keyboard focus indicator is visible (Level AA).

3.2.1 On Focus: The context does not change based only on a compo-
nent receiving focus (Level A).

3.2.2 On Input: The context does not change when a setting is
changed, unless the user has been advised of the behavior before
using the component (Level A).

3.2.5 Change on Request: Changes of context are initiated only by
user request or a mechanism is available to turn off such changes
(Level AAA).

84 Chapter 5

3.3.1 Error Identification and 3.3.3 Error Suggestions: An item
with an error is identified and the error is described to the user in text
(Level A) and with a suggestion (Level AA) when possible.

3.3.2 Labels or Instructions: Labels or instructions are provided
when content requires user input (Level A).

3.3.4 and 3.3.6 Error Prevention: Actions that submit information
are reversible and checked for all (Level AAA) or for legal and finan-
cial transactions (Level AA).

3.3.5 Help: Context-sensitive help is available (Level AAA).

4.1.2 Name, Role, Value: Interface elements are identified so that
their name and role can be read by assistive technology and other
user agents. There is a way for the program to set any values that
users can set (Level A).

The full text of the WCAG 2.0 requirements can be found in Appendix B.

Summary
Making the interaction easy for people with disabilities is an exten-
sion of making interaction easy for everyone. Interactive elements
are identified clearly and are designed to be easy to use.

The site supports interaction with a keyboard, allowing assistive
technology to emulate the keyboard. This also requires that the key-
board tab order make sense, matching the visual presentation.

A site with easy interaction enables users to control the interface,
with large enough controls. It avoids taking unexpected actions for
users that they can do on their own. Easy interaction also includes
both preventing and handling errors in an accessible way.

 Easy Interaction: Everything Works 85

Profile: Accessible Interaction with Derek Featherstone

Derek Featherstone is founder and lead of Simply Accessible, a con-
sultancy that works to bring accessibility into organizations through
consulting, training, workshops, and support. Derek is a well-known and
well-respected advocate for accessible user experience, moving beyond
technical accessibility to support good and successful experiences for
everyone. Interactivity is a complex challenge for accessibility, making

sure that sites and apps are operable in different ways on different devices. We wanted
to learn from Derek how best to approach a moving target like accessible interaction.

People are the starting point.
Concern for people is the primary driver for Derek and his colleagues at Simply
Accessible. “It has to be about the people who are actually using the site or appli-
cation to accomplish something. If it’s not about them, then what’s the point?”

Best accessibility techniques are constantly changing.
Derek’s team works from a knowledge base of accessible techniques, built over
years of user research and usability testing. From there, they use observation and
experimentation to come up with better techniques for coding, designing, and
writing content that improves the user experience.

Technical remediation can help make interaction accessible.
Most often, Derek’s team is called on to make an existing website or app acces-
sible. Often, the designs are visually rich and appealing, and convey information
and relationships among elements in a visual way. However, those visual details
are not always in the code.

For example, many social media sharing badges don’t have alt text that accurately
reflects the contents of the badge. Visually, you can tell whether an item has been
liked or shared, but the code doesn’t contain the same information. Derek and his
colleagues have been working on a script that would make state and status infor-
mation available in the code where it’s available to assistive technology.

We know it would be better if these elements were natively accessible. We also
know that change doesn’t happen right away. We keep our fixes on file so we
can use them while the people in charge of social sharing badges work on
making them more accessible.

“Our entire team views accessibility as part of overall user experience and not as
a separate thing that needs to be done afterwards.” However, in practice, clients
often come to accessibility late in the process, when there is little hope of chang-
ing the course of the design to produce a more accessible outcome. “What we
usually do is say, given what you’ve designed, here’s what you need to do to make
it work in a more accessible way.”

profile continues on next page

86 Chapter 5

Profile: Accessible Interaction with Derek Featherstone (continued)

Integrated accessibility produces the best outcomes.
But in some projects, they are brought in early and remain part of the team
throughout the project. These projects are the most successful. “What it comes
down to is having people switched on right from the beginning of the project.
They understand accessibility as more than a technical checklist.” With an early
commitment, accessibility becomes part of the well-established user experi-
ence practice. “One of the most important things to achieve success is to have all
accessibility touch points built into the process right from the beginning.”

Tools help teams integrate accessible components.
Derek and his colleagues have had good success providing teams with tools that
make it easier to build accessible products. One tool is an accessibility guide,
integrated into the organizational style guide or branding guide. Another is a
code repository and pattern library containing elements like modal dialogs or
tool tips that can be easily dropped into code. “One of our goals is to eliminate
excuses. We think about all the different pressures people feel when building a
site and try to address them.”

The most influential tool for accessibility is clear purpose.
In cases where Derek has been able to influence design, the best tool in guid-
ing an accessible process has been clear purpose. “Asking the original question,
what is the purpose of this page and what are we trying to help people do. And
once we get answers, we can start asking questions like, how does somebody
who uses voice recognition software because they don’t have the ability to use
their hands, how are they going to activate that particular type of control?”

Solutions come from different places.
Derek tells a story of a woman who needed a very specific design approach for
accessible interaction. She was a quadriplegic, but had enough strength in one
arm to lift her hand and operate a large touchscreen. Her greatest challenges were
radio buttons and checkboxes, which were too small for her to activate accurately.
Derek created a stylesheet she could install in her browser that would resize radio
buttons and checkboxes ten times the size they normally appeared.

The story illustrates that accessible interaction isn’t about finding the one solu-
tion that works for everyone. “We can create one solution that works for most
people’s abilities, but there are some people that need accommodation for their
disabilities that a designer or developer can’t take into account in their work.” In
these cases, the work of the designer and developer is to make the design flexible
and adaptable. That way, browsers and assistive technology can take elements of
the design and adapt them to meet the specific needs of the user.

Helpful
Wayfinding:
Guides Users

How Helpful Wayfinding Supports Accessibility 90

How to Design Helpful Wayfinding 91

Create consistent cues for orientation and

navigation 91

Present things that are the same in the same way 91

Differentiate things that are different 92

Provide orientation cues 93

Provide clear landmarks within the page 94

Provide alternative ways to navigate 96

Who Is Responsible for Wayfinding? 98

WCAG 2.0 and Helpful Wayfinding 98

Summary 99

Profile: Coding Accessibility with Steve Faulkner 100

CHAPTER 6

A REAL WORLD EXAMPLE

Getting Around an Airport

Paul Mijkensanaar designed the wayfinding system for 10 inter-
national airports. This photo is from the bilingual wayfinding system
at the Geneva International Airport. (www.mijksenaar.com)

In the physical world, we rely on maps, street signs, and how spaces are
designed to help us get around. A corridor looks different than a meeting
room, and we know one is for passage and the other is for gathering and
discussion. Signs identify the routes and destinations, helping us get from
here to there.

When signage uses consistent colors, typography, and icons and is placed in
a visible location, it can be easy for people to find their way, even around a
crowded airport.

 Helpful Wayfinding: Guides Users 89

In both the online and physical world, people rely on familiar pat-
terns to help them find their way more easily. A mix of conventions
and experience helps everyone locate cues in either the physical

environment or an online interface, using the design of directional signs
or interaction features like menus, buttons, and links. When these fea-
tures are easily found where they are most expected, it takes less effort
to use them. Table 6.1 compares the tools for wayfinding in the online
and real worlds.

Wayfinding and orientation are especially important on the web where
users have a relatively small window into the site (and an even smaller
view on the tiny screens of mobile devices). Every site needs orienta-
tion features to help users know where they are, and it needs wayfinding
features to help users find their way to the information or function
they came to the site for. When these features anticipate users’ needs, it
makes using a site easier for everyone.

TABLE 6.1"WAYFINDING IN THE REAL WORLD AND ONLINE

Wayfinding in the Real World Wayfinding Online

Architectural features define the space
with paths, doorways, and so on.

Semantic features define the space
with areas for information, interaction,
orientation, and navigation.

Conventions for the placement of
signs help people find them easily.
There are often local standards, but
they may vary.

Conventions for the placement of
types of links or features help people
find them easily, but there are no
global standards.

Visually distinct landmarks help keep
people oriented. (For example, “Let’s
meet at the clock at the station.”)

Visual design, the types of content,
and presentation details vary by the
type of page, and help people stay
oriented as they move around the web.

Signs mark places (shop signs,
street signs).

Headings, landmarks, and visual cues
mark places.

Signs point out paths to other
destinations.

Menus and links point out paths to
other destinations.

Signs have colors, shapes, and
symbols to go along with the words.

Colors, icons, and typography
go along with words to provide
multiple cues.

Directories are organized in a logical
order (alphabetical, by type, or
by location).

Menus and page elements are
organized in a logical order.

Space maps provide an overview. Site maps provide an overview.

90 Chapter 6

When I can learn the pattern, I can find
my way.

I like games. The ones where you have to

find your way around a maze are good

because I can go over them, and I can

learn how they work. It’s OK to get lost

and have to figure out a game.

But when I’m trying to find something, like an assignment

for school, I don’t like getting lost. I want to know where I’m

going—because it’s easier, and it’s easier to find things again

when I need them. When it’s clear and I can tell where I am,

I like the site. It’s like learning how to walk to school on my

own. I practiced finding my landmarks, so I would know where

to turn. I know that it’s 500 steps from 1st Avenue to the first

street I have to cross. Just like I know what to click on to get to

my history class page on my school’s website.

How Helpful Wayfinding
Supports Accessibility
Wayfinding includes both navigation (features that let users move around
the site) and orientation (identifying the current location). A site with way-
finding that works well for both visual navigation and all kinds of assistive
technology makes the online environment usable for everyone.

With helpful wayfinding, people can navigate a site, feature, or page
following self-explanatory signposts.

Navigation options make sense. It can take more effort to navigate
a website or web application using assistive technology, which makes
every action more important. Links that aren’t clear and menus that
are confusing can result in ping-ponging among sections and back-
tracking. Clear wayfinding reduces the chance of making the wrong
choice among navigation options.

The interface supports exploration. No one wants to be pushed
through a chute with no options. Sometimes the fun is in finding your
own way through a site. When a site has good wayfinding, explora-
tion is safe, because it offers clear cues about where each link or menu
option leads, and it has consistent ways back.

Trevor

 Helpful Wayfinding: Guides Users 91

People know where they are. We all like to know where we are.
When people are following a link or diving into the middle of a site,
they need to know where they have landed, and what’s available on
this page. A site designed for easy wayfinding provides strong orien-
tation cues so that everyone can use them, no matter how they are
accessing the site.

How to Design Helpful Wayfinding
People rarely go online for the sheer joy of navigating around a site or
app. (Perhaps people working on user experience do, but it’s not the most
usual reason.) The goal in designing navigation is to make it so intui-
tive that it becomes invisible to the user. With well-designed wayfinding,
users can find their way around with minimal effort.

Create consistent cues for
orientation and navigation
People tend to navigate partly by using the cues they experience in real time
and partly by using a cognitive map, or mental construct, of the space (real
or digital) they are navigating. Even small variations can be disorienting.

Although a clear and consistent model is important for any user, it
is especially important for people who use screen readers and other
technologies that read the page linearly. For linear access, consistent
placement of elements and use of consistent semantic markup, including
headings, helps users form mental models.

A visual user, for example, might quickly learn that there is a logo in a
banner at the top of the page, search in the upper-right corner, and see a
colorful title marking the beginning of the main content. A nonvisual user
might equally quickly learn that the same title is the second heading on
the page and use that model to jump rapidly to content on other pages.

Present things that are the same in the same way
One way to help users find their way around a site is to be consistent in
how elements of the site are presented and labeled, which doesn’t mean
that the site must be boring with no variation or texture. However, ele-
ments of the site that form important landmarks should be consistent:

Describe or label the same thing in the same way each time.

Be consistent about the location in the page structure of key navigational
elements, including menus and links to features like contact pages.

92 Chapter 6

The relationship between links and the pages they point to should also
be consistent. Consider these basic rules:

The text of the link should accurately communicate the page or
feature that the link connects to.

The text of the link and the title of the target page should be similar,
if not identical.

Differentiate things that are different
When navigating in the real world, differences help you stay oriented.
You recognize the corner where you turn not just by the name of the
road, but because you recognize the building on the corner, or because
the traffic on the main road sounds different than the quiet side streets.

It’s the same on websites. Differences in layout and page elements help
identify the page type or site section. For example, when encounter-
ing a carousel of big images and bold headlines, you might assume that
you are on a home page. A page that is mostly information is probably

Good Signposting Supports Cautious Clickers

Research with older adults found some distinctly different patterns in how they
interacted with websites.

They were “cautious clickers” who spent more time reading before deciding
to click on a link.

They were more likely to try to click on text that was not linked, hoping that
it would let them find the information they wanted.

They had more difficulty understanding where they were within a site. For
example, they would click on the current page link in the left menu.

When the team redesigned pages to accommodate their needs, older adults had
less trouble navigating. Their design recommendations were:

Use action words as links.

Present links in an obvious and consistent way.

Include images used as icons or bullets in the link.

Use simple, clear navigational cues and labels.

Use secondary or pop-up windows rarely.

“Web Usability and Age: How Design Changes Can Improve Performance” by Ann
Chadwick-Dias, Michelle McNulty, and Tom Tullis. http://dl.acm.org/citation.
cfm?id=957212

 Helpful Wayfinding: Guides Users 93

a content page. And a page with a lot of links is for navigation, or what
Ginny Redish calls a “pathway” page.

There can be too much consistency if it blurs important distinctions.
People like predictability, so when the same words, images, or buttons
do different things, it’s disorienting and breaks their mental models.

Provide orientation cues
Orientation—knowing where you are—is an important part of success-
ful wayfinding. When arriving at a page, how easily can you tell where
you are and answer questions like “What is on this page?” or “What site
is this page part of?” and “Where am I in this site?”

Orientation is important whether the journey starts from the home page
or the user has landed in the middle of a site by following a link. In fact,
users are more likely to start from the middle of a site than to navigate
from the home page. Either way, the site needs clear “You Are Here” ori-
entation cues, integrated into the design, content, and code.

Identify the site. Be sure that it’s easy to find the name of the site and
to identify the organization behind the site.

Title the page. The page title is the text that appears in the title bar
of the browser. It’s also the text that displays in a bookmarks list, in
search results, and it is the first thing announced by screen reader
software. The title tells what the page is about, and it also provides
orientation cues. A good convention is to include page title, section
name, and site name (in that order) in the <title> tag.

Provide good headings. Headings describe the main topic of the
page, as well as sections of content. Marking up headings using the
correct markup (<h1–h6>) makes it easier for people who use assistive
technology to find them.

Start with an overview. It’s common for users to leave sites if they
don’t see what they are looking for quickly. “Bouncing” is part of gen-
eral behavior on the web, but you can help people make an accurate
assessment by providing good content overviews.

Highlight the current location. There are many ways to identify
where a page fits into a site, from the page title to highlighting the
menu item for the section to breadcrumb navigation.

Use multiple cues. Providing more than one cue for orientation helps
both visual and verbal thinkers. For example, using an icon with
color-coding and a strong text label provides three ways to identify a
page or feature.

94 Chapter 6

When describing the interface, avoid using details like color or even loca-
tion on the screen as the only cues in the instructions. Directions like “in
the upper-left corner” don’t mean much to someone navigating by audio.
It’s okay to use color and location along with other nonvisual cues: “The
blue link labeled ‘Contact Us’ in the upper-left corner.”

Provide clear landmarks within the page
Once visitors have gotten to a page, they still need to find their way
around. Good visual design cues, good headings and other labels, and
good underlying structure have to work together to make this pro-
cess easy for everyone. When they do, the parts of the page are easy
to differentiate both visually and in the code so they are available to
assistive technology.

One way to provide a navigation map of the page is to use links that
jump to specific areas of the page. These are often called skip links
because they let a site visitor skip over sections of the page to go directly
to key locations on the page. This is especially important as a way to skip
over repeated blocks of content, like the links and logos in the heading of
the page (see Figure 6.1).

FIGURE 6.1
The OpenIDEO pages
are complicated, with
many different zones
on the page. When
the team retrofitted
the site for acces-
sible navigation, skip
links provided a way
to create an easy way
to navigate to the key
interactions on a com-
plex page.

 Helpful Wayfinding: Guides Users 95

Links at the top of the page make
navigation easier for me.

I like pages with links at the top of the

page. It’s really helpful on long pages with

a lot of sections. I can figure out what’s

on the page without a lot of work. When

I first saw a link to jump to the content,

I didn’t know what it was for, but it sure

made navigating with a keyboard easier.

A better way to code navigation is with HTML5 elements and ARIA roles.
These are complementary ways to identify parts of the page (see Table 6.2
and Figure 6.2). Adding elements and roles makes pages semantically rich
by embedding information about the purpose of different elements. This
information is then available for software—browsers, search engines,
assistive technology—to use to enhance the user experience. For example,
screen readers provide controls to move focus among the sections, which
lessens the need for skip links as a way to bypass blocks of content. By
coding boundaries around elements, you create clear landmarks that do
not rely on visual properties, such as outlines or background color.

Because HTML is in a transitional phase, one of the challenges of work-
ing with these new standards is that using both elements and roles can
create some duplication. For example, using both the <main> HTML ele-
ment and the “main” ARIA role means that some screen readers will
announce both, and users will hear, “main main.” Over time, many of the
ARIA roles will be incorporated into HTML5, and assistive technology

Lea

TABLE 6.2"HTML5 AND ARIA NAVIGATION

HTML5 Element ARIA Role

<article> “article”

<aside> “complementary”

<footer> “contentinfo”

<header> “banner”

<nav> “navigation”

<section> “region”

<main> “main”

“search”

96 Chapter 6

will work with the standards in a more consistent way. Until then, using
ARIA roles and HTML5 elements is the best approach to ensure that this
important information is available to all users.

Provide alternative ways to navigate
It’s important to reiterate: there is no one way to provide accessibility.
The solution instead is to provide alternatives. For helpful wayfinding,
this means offering different navigational options.

Most sites include more than one way to move around the site: menus,
links, a sitemap, or search. Providing alternatives improves the chance
that people will find what they are looking for.

For many people, given the choice of browsing through menus to explore
options versus using search, search wins. For people with disabilities,
for whom navigation can be slower and more difficult, search provides
the means to jump directly to the right page. Many sites have realized
the universal appeal of search and have made it prominent on the home
page so it’s easy to use to navigate.

<header role="banner">

<footer role="contentinfo">

<nav role="navigation"> <main role="main"> <aside role="complementary">

FIGURE 6.2
HTML5 elements and ARIA roles are complementary. Including both of them in
your site provides a solid code structure and good navigation around the page.

 Helpful Wayfinding: Guides Users 97

Google Maps

You might not realize that the turn-by-turn text directions in Google Maps that
so many people rely on started as an accessibility feature (see Figure 6.3).

FIGURE 6.3
The original interface to Google Maps was entirely visual. Users would
explore the map, including all the rich information about local features,
and follow the guide on the visual map to get from place to place.

T.V. Raman, a research scientist at Google, created the first Textual Maps UI. As
he wrote in his blog in 2006, “When using spoken output, this visual richness can
get in the way of quickly listening to the results of a maps query.”

His solution was an alternative interface that “serves up directions very efficiently
when working with a screen reader or a braille display. … It’s extremely useful for
blind and visually impaired users, as well as an effective solution for those times
when you’re at a nongraphical display and need to quickly look up a location. Just
type a simple English query of the form start address to end address and quickly
get the information you’re looking for. Though we added this option to enhance the
accessibility of Google Maps for blind and low-vision users, perhaps others will find
this alternative view a useful addition to their maps arsenal.”

You can read his blog entry from December 26, 2006: http://googleblog.
blogspot.com/2006/12/speech-friendly-textual-directions.html

98 Chapter 6

Who Is Responsible for Wayfinding?
Creating helpful wayfinding relies on both good design practices and
user research. Understanding how your audience thinks about the infor-
mation architecture is critical.

The design and content teams are responsible for strong information
architecture, backed up by good user research. The teams should look for
opportunities to help users make their way through the space and pro-
vide clear, distinctive landmarks to help them stay oriented.

In addition, it’s important that wayfinding elements in the design and
content are supported by the code, with landmarks that provide alterna-
tive ways to navigate a site or application.

WCAG 2.0 and Helpful Wayfinding
The guidelines for Helpful Wayfinding map to the following WCAG 2.0
requirements.

A site with helpful wayfinding is Operable and Understandable, with
landmarks for orientation and wayfinding presented both in the content
and code.

Wayfinding relies on being:

2.4 Navigable: Provide ways to help users navigate, find content, and
determine where they are (Guideline).

3.2 Predictable: Make web pages appear and operate in predictable
ways (Guideline).

The requirements for helpful wayfinding are:

2.4.1 Bypass Blocks: Users can bypass blocks of repeated content
(Level A).

2.4.2 Page Titled: Web pages have titles that describe topic or pur-
pose (Level A).

2.4.4 and 2.4.9 Link Purpose (In Context or Link Only): The pur-
pose of each link can be determined from the link text alone (Level
AAA) or from the link text together with context (Level A).

2.4.5 Multiple Ways: More than one way is available to locate a web
page within a set of web pages, except for pages that are a step in a
process (Level AA).

 Helpful Wayfinding: Guides Users 99

2.4.6 and 2.4.10 Headings and Labels: Headings and labels describe
topic or purpose (Level AA) and are used to organize content
(Level AAA).

2.4.8 Location: Information about the user’s location within a set of
web pages is available (Level AAA).

3.2.3 Consistent Navigation: Navigational mechanisms that are
repeated on a set of web pages are presented consistently (Level AA).

3.2.4 Consistent Identification: Components that have the same
functionality within a set of web pages are identified consistently
(Level AA).

The full text of the WCAG 2.0 requirements can be found in Appendix B.

Summary
Helpful wayfinding depends on consistent, understandable cues
that help users know where they are (orientation) and how to get
where they want to go (navigation).

Some aspects of wayfinding are part of the content and presenta-
tion design: titles for pages, naming things that are the same in the
same way each time (and differentiating things that are different),
and including information about where users are in a page, site,
or process.

Helpful wayfinding also relies on cues in the code, including ARIA
landmarks, which act as descriptive landmarks for navigating
around the page, and descriptive coding for navigation elements.

100 Chapter 6

Profile: Coding Accessibility with Steve Faulkner

Steve Faulkner has been an accessibility engineer since 2001, first with
Vision Australia and currently with The Paciello Group. He has a hand
in developing HTML5 and WAI-ARIA specifications as a member of W3C
working groups, and is editor of W3C specifications on HTML5, Using
ARIA in HTML, accessibility APIs, and text alternatives. In short, Steve
has accessibility chops.

Because much of what’s needed is beneath the surface of a page, we asked Steve to explain
what user experience designers should know about how code supports accessibility.

Elements of an accessible user interface.
Web accessibility is largely about providing the information needed to make a user
interface accessible to assistive technology (AT). This is accomplished via an acces-
sibility application programming interface (API)—a standardized way of specifying
elements of an interface. For accessibility, Steve explains, “One piece of the puzzle is
for information to be defined by an accessibility API. The second piece of the puzzle
is for AT to make use of it.”

For the web, every HTML element has a role, states, and properties that are defined
in the technology specification—“what it is, what it does, and where it’s at, at this
point in time.” That information is expressed by the accessibility API in the browser
so that assistive technology can make use of it. “For example, with a heading, one of
the properties might be its level, and whether it’s editable, visible, or linked.” Infor-
mation in the accessibility API allows assistive technology to, for example, create a
list of headings or move keyboard focus to the main heading of a page.

An accessibility API needs more than HTML.
There are gaps in how native HTML elements support the accessibility API. “Some
decisions about what goes into HTML and what doesn’t don’t take into account
accessibility requirements.” For example, the role “main” is not represented in the
HTML5 specification as an element, despite the expressed need for AT users to
move cursor focus to the main content area. Other roles are defined, such as header,
footer, and navigation: “I guess the thinking was, anything that’s not something else
must be the main content.”

Also, HTML elements are not always used correctly. As an example, Steve explained
that HTML buttons have been part of the specification for 15 years. However, devel-
opers build custom buttons using elements like images and links that are coded to
behave like buttons. Typically, this is because “They have to please whoever makes
the design decisions. To achieve a certain visual effect across different browsers and
platforms, they can’t always use standard controls.” In these cases, “WAI-ARIA is the
only way to supplement the necessary information for assistive technologies.”

PA
TR

IC
K

 H
. L

A
U

K
E

 Helpful Wayfinding: Guides Users 101

Profile: Coding Accessibility with Steve Faulkner

WAI-ARIA fills the gaps.
WAI-ARIA fills out the accessibility API, enhancing the descriptive information con-
tained in native HTML controls and back-filling information for elements that are
used for other than their intended purpose.

For example, ARIA provides explicit roles and properties to assist in wayfinding
for users of assistive technology. Like “stepping stones,” ARIA landmark roles allow
assistive technology users to step through the content of the page to find the content
area of interest.

HTML5, ARIA, or both?
In general, support for ARIA is more robust than accessibility support for new
HTML5 features, because it’s been around longer and has benefited from successful
collaborations between accessibility experts and software vendors. “I’m not saying
that it’s good across the board, mainly due to some AT vendors just putting their
heads in the sand, which has the effect of doing a disservice to their users.” And you
can count on support for ARIA in the future. “As far as ARIA is concerned, it will
remain relevant for many years to come. As new issues and technologies emerge,
there will be new related updates to the ARIA specs to fill in any gaps.”

It’s best to think of ARIA as complementary to HTML. “A good rule of thumb is,
when there’s a native HTML structure, element, or attribute that’s well supported,
use it. If that’s not enough, use the appropriate ARIA semantics.”

Advice for project teams.
Steve encourages developers to add ARIA landmark roles. “The good thing about
landmarks is that you can add them to your current code, and they don’t have any
design effects.” For interactive widgets that provide complex interactions, he recom-
mends looking to existing libraries, such as JQuery or Dojo—code with WAI-ARIA
already built in.

But he also sees the need for a change in mindset in how we build websites and
applications. Project efforts often focus on the business transactions that occur
on the back end, with little thought given to the user interface. “You tend to find
back-end coders developing front ends without understanding what makes a user
interface usable, let alone accessible.”

On the design end, Steve urges designers to understand that design elements are not just
“pixels on a page,” but rather semantic containers for information described in code. “I
don’t think designers need to know how to code. They do need to understand that there’s
a give and take between what can be done, given the requirement to actually code.”

Overall, he believes project teams must include user interface expertise. “What’s
needed is the realization within a team of the value of having people who under-
stand usable UI design and can bring it to fruition using the code.”

